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Kinetic friction and atomistic instabilities in boundary-lubricated systems
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The contribution of sliding-induced, atomic-scale instabilities to the kinetic friction force is investigated by
molecular dynamics. For this purpose, we derive a relationship between the kinetic friction forceFk and the
nonequilibrium velocity distributionP(v) of the lubricant particles.P(v) typically shows exponential tails,
which cannot be described in terms of an effective temperature. It is investigated which parameters control the
existence of instabilities and how they affectP(v) and henceFk . The effects of the interfaces’ dimensionality,
lubricant coverage, and internal degrees of freedom of lubricant particles onFk are studied explicitly. Among
other results, we find that the kinetic friction between commensurate surfaces is much more susceptible to
changes in~i! lubricant coverage,~ii ! sliding velocity, and~iii ! bond length of lubricant molecules than
incommensurate surfaces.
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I. INTRODUCTION

The everyday phenomenon friction is of great practi
and economic importance, which is one of the motivations
improve our understanding of tribological processes@1,2#.
Friction between two solids differs from that between a so
and a fluid in that both static and kinetic friction appe
finite, while the force between a solid and a fluid, vanish
linearly with sliding velocityv0 at smallv0. Static friction
Fs is the externally applied force necessary to initiate relat
sliding motion between two solids, whereas kinetic fricti
Fk is the force needed to maintain the sliding motion. P
nomenological friction laws, which date back to da Vin
Amontons, and Coulomb@3#, often provide a good descrip
tion on the macroscopic scale.

The microscopic origins of kinetic friction are still a ma
ter of debate, even though it has long been recognized
kinetic friction must be due to dynamical instabilities@4,5#.
While there can be many different processes leading to
stabilities, they all have in common that potential energy
converted abruptly into kinetic energy and ultimately lost
heat@6#. Although instabilities can occur on many differe
time and length scales, there has been an enhanced inter
identifying those that occur on atomic scales. This ques
not only motivated by the miniaturization of technical d
vices down to the nanometer scale, but also by the desir
better understand macroscopic friction. The understandin
single-asperity contacts is needed as basis for the full
scription of macroscopic friction, where the bulk-mediat
coupling between contacts gives rise to additional effects

Load-bearing, simple-asperity contacts are often in the
der of micrometers. According to Hertzian contact mech
ics and generalizations thereof, the pressure is rather con
in the contact with the exception of the areas close to
circumference, where pressure gradients are large. In
center of the contact, most of the lubricant is squeezed
One may assume that these boundary-lubricated areas
1063-651X/2003/68~1!/016125~14!/$20.00 68 0161
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account for most of the energy dissipation when two sol
are slid against each other, unless the solids are very com
ant, in which case elastic instabilities may also contribut
significant amount to the net dissipation. If wear was t
main source of friction, material would have to rub off fro
the surfaces much faster than observed experimentally@7#.
Hydrodynamic lubrication would likewise result in value
for friction orders of magnitude too small, if it were assum
to be the dominant dissipation process.

While the crucial role of surfactants for friction has ce
tainly been recognized, relatively little attention has be
paid to characterize dynamical instabilities in boundary
bricants. Most of the work on instabilities leading to frictio
is devoted to elastic processes, which are most simply
scribed in the Prandtl-Tomlinson~PT! model@8,9#. In the PT
model, an atom is pulled over a substrate by a spring
moves at constant velocityv0. If the spring stiffness is below
a certain critical value, the atom’s instantaneous velocity
exceedv0 by many orders of magnitude, see, e.g., the d
cussion in Refs.@5,6#. This process results in nonvanishin
Fk in the limit of zerov0 as long as thermal fluctuations a
absent. There is, however, a crucial difference between in
bilities in boundary lubricants and instabilities occurring
elastic manifolds that are modeled in terms of the PT mo
and related approaches such as the Frenkel-Kontorova m
@10,11#. In boundary lubricants, atoms are only weakly co
nected to each other and to the confining walls. As a con
quence, bond breaking can occur; whereas in elastic mod
bonds are treated as unbreakable. This seemingly subtle
ference leads to different tribological behavior.

Two different avenues have been pursued in the rec
past to study dynamics in boundary lubricants and its con
quences for tribological properties. One is a minimalist a
proach, in which one single lubricant atom embedded
tween two shearing plates is considered@12,13#. In the
following, we will refer to this approach as the impurit
limit. The other avenue incorporates a large ensemble of
©2003 The American Physical Society25-1
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bricant atoms@14,15#. This approach can eventually includ
surface curvature and elastic deformation of the surfa
making it possible to study what effect the interplay of s
face curvature and elastic deformations has on dry
boundary-lubricated friction@16,17#.

In this paper, we intend to analyze what features of s
plistic models appear robust as the level of complexity in
description of the boundary lubricant is increased. Since
netic friction is intimately connected with instabilities, w
focus on the analysis of instabilities. In an earlier paper
one of us@18#, it was found that the existence of instabilitie
in the impurity limit and as a consequence the frictio
velocity relationshipFk(v0) depends on the ‘‘details’’ of the
model. For instance, it was found that for one-dimensio
~1D!, commensurate interfaces, the sign of the first hig
harmonic in the lubricant-wall potential determines~a!
whether or not the athermal kinetic friction remains finite
the zero-velocity limit and~b! the exponentb that describes
the finite-velocity corrections by

Fk~v !2Fk~0!}v0
b . ~1!

Note that Eq.~1! changes its form when thermal noise
included into the treatment, i.e., it becomes linear at sm
velocities@18#. Depending on the ratio of the relevant ene
gies and temperature, thermal effects may be neglig
down to very small values ofv0.

While Ref. @18# mainly focused on the impurity limit, we
intend to extend the analysis in a systematic way to l
idealized situations. For example, instead of simple spher
impurities, dimers and hexamers~6-mers! will be studied.
Moreover, direct interactions between lubricant particles w
be included and the effects of increasing coverage will
discussed. The central assumption of our analysis is the
istence of instabilities or ‘‘pops’’ of certain degrees of fre
dom. A pop is a sudden, seemingly erratic motion of a p
ticle ~or a collective degree of freedom! characterized by a
velocity much larger than the associated thermal velocity
the drift velocity of the atom. Pops heat the lubricant
alternatively they couple directly to the confining solid wal
i.e., by inducing phonons in the walls. They will eventua
induce more dramatic effects such as generation of dislo
tions or abrade the surfaces. However, as argued above,
extreme processes are rare and hence presumably the
not responsible for the main part of the energy dissipati
This is the motivation to concentrate on the energy tran
to the phonon bath that is due to elementary processes in
lubricant. The underlying idea of the presented approach
be described as follows. Sliding-induced instabilities ma
the velocity probability distribution~PD! of the lubricant at-
oms deviate from the thermal equilibrium PD. This alters
balance of energy flow from and to the lubricant. The ene
missing in this balance is provided by the external drivi
device.

In this paper, we will develop a simple kinetic theory th
connects the energy dissipation with the velocity PD~Sec.
II !. After discussing the numerical techniques in Sec. III,
will apply the theory to models of boundary lubrication
various complexity. This will include both the impurity limit
01612
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which is discussed in Sec. IV, and more complex situatio
that include interaction between lubricant atoms~Sec. V!.
Section VI gives the conclusions.

II. THEORY

A. General comments

The most fundamental assumption in this paper is that
interaction between the lubricant atomi and the confining
wall can be decomposed into one conservative partVw(r i)
and one nonconservative term consisting of a damping fo
plus thermal noise.Vw(r i) depends only on the differenc
between the positionr i and the positions of top wallr t and
bottom wall rb . It can be written as

Vw~r i !5Vb~r i2rb!1Vt~r i2r t!, ~2!

where depending on the model under consideration, vector
can be one, two, or three dimensional. Unless otherw
noted, the relative motion of the walls is imposed externa
i.e., by constant separation~or constant load! and constant
relative velocityv0ex5( ṙ t2 ṙb) of the walls parallel to the
sliding direction indicated by the unit vectorex . We assume
the normal pressure variations to be small, which means
the coupling to each individual confining~crystalline! wall is
periodic parallel to the interface, i.e., it is periodic in thexy
plane.

In the theoretical part of our treatment, we assume that
nonconservativeforce Ft,i

(nc) that a wall ~here the top wall!
exerts on the lubricant atomi consists of a simple, viscou
damping term2g t( ṙ i2 ṙ t) plus a random forceGt(t), thus

Ft,i
(nc)52mig t~ ṙ i2 ṙ t!1Gt~ t !, ~3!

where the random forceG(t) is chosen such that detaile
balance is obeyed when the external stress is absent.
the usuald correlation of the random forces is assume
namely@19#

^Gt~ t !Gt~ t8!&52Dg tmikBTd~ t2t8!, ~4!

whereD is the physical dimension,kBT is the thermal en-
ergy, andmi is the mass of lubricant atomi. Random forces
plus damping term2mig tv ~we dub the sumthermostat!
mimic the interactions with phonons and/or other excitatio
which are not treated explicitly. Typically, the time scal
associated with these excitations are short compared to
motion of a particle from one minimum to another, whic
justifies the assumption ofd correlated random forces for ou
purposes. Of course, damping can and will be different n
mal and parallel to the interface. However, this detail do
not have any significant consequences for the conclus
presented in this paper. Similarly, the explicit treatment
internal elastic deformations does not alter the major con
sions either.

We will now be concerned with the derivation of a form
equation for the friction force. In any steady state of t
system, the average force on the upper wall~or the lower
wall! must be zero. If the time average was different fro
5-2
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KINETIC FRICTION AND ATOMISTIC . . . PHYSICAL REVIEW E 68, 016125 ~2003!
zero, the upper wall would be accelerated in contradiction
the steady-state assumption, as pointed out, for instance
Thompson and Robbins@15#. The net force on the upper wa
consists of three contributions: The externally applied fo
Fext, the conservative force between lubricant and wall, a
the nonconservative force by the thermostat. The exte
force Fext does the workWext on the upper wall given by

Wext5E dr tFext. ~5!

The kinetic friction forceFk follows from that expression a
it equals the work done on the system by external for
divided by the distance moved.

Since the conservative potential is assumed to be perio
it cannot do any net work on a steady-state system and
may not consider it in our energy balance. This implies t
the work must be done on the thermostat. The power di
pated into the damping term is proportional togm( ṙ2 ṙ t)

2;
however, parts of that contribution can be provided by
stochastic random forceG(t). Hence, if we want to accoun
only for the powerPext that is dissipated into the dampin
term due to theexternallyapplied force, we have to integrat
over the velocity distributionP(v) but we have to subtrac
the contribution that is due to the random force. The la
contribution is very difficult to calculate. We assume that t
heat flow from the random force into the impurity system
identical to that in thermal equilibrium, in which the equilib
rium ~Maxwell-Boltzmann! distributionPeq(v) applies. This
yields

Pext5NflgmE
0

`

v2$P~v !2Peq~v !%dv, ~6!

whereNfl is the number of lubricant atoms,v is the velocity
of a particle relative to the center-of-mass motion of the
per wall. The net external driving force~or in other words the
kinetic friction forceFk) can now be associated with

Fk5Pext/v0 . ~7!

We want to emphasize that Eqs.~5!–~7! allow one to cal-
culate friction forces under more general conditions th
those of our particular model, for instance, if the thermos
only acts on the atoms in the outermost layers of the walls
e.g., employed in Ref.@20#. The approach can also be e
tended in a straightforward manner if generalized forms
the thermostat are employed such as in dissipative par
dynamics @21# or if the thermostat is based on a Mor
Zwanzig formalism@22,23#. The main limitation of Eq.~6! in
the present context is that effects due to heating of the w
are not included. Again, a minor modification would allo
one to include heating of the walls into the presented fram
work as well. However, as we will mainly focus on sma
velocities, the mentioned effects will be small and shall
neglected in the following.

Note that an alternative way of determining the frictio
force in the steady state is to time average the conserva
plus the nonconservative force that the upper wall exerts
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the lubricant. The observation that the work done by
conservative force is essentially zero does not imply that
time average must be zero. A formal derivation of the co
clusions from this section is given in the Appendix.

B. Effect of instabilities

As discussed in the Introduction, the externally impos
relative motion of the confining walls may induce sudde
dynamic instabilities or pops during which the particles’ v
locities greatly exceed both their thermal velocities and
relative sliding velocityv0 of the walls. This means that at
time t1dt the atom does not find a stable position in t
O(v0dt) vicinity of the old stable position at timet. The
continuous trajectory ends att and the particle has to move t
the next mechanically stable position to resume its path.
particle will then pop into the next local potential minimu
and for low sliding velocities, its peak velocityvpeak will be
solely determined by the energy landscape and consequ
lim

v0→01vpeak/v0 diverges. Its kinetic energy will be dissi

pated~e.g., by phonons! and lead to friction. This proces
will lead to a deviation of the velocity distributionP(v)
from the thermal equilibrium distributionPeq(v) valid for
v050. Figure 1 shows such instabilities for a model syst
that is described in detail in Sec. III.

The velocity distributionP(v) and hence the friction
forceFk can be calculated in principle, once the precise fo
of the lubricant’s interaction is known. Risken@19# gives an
excellent overview of methods that allow one to treat mod
like ours, namely, externally driven systems that are mai
deterministic and also contain a certain degree of ther
noise. An analytical approach remains difficult in our ca
due to the potential’s complex time dependence. Therefo
different, phenomenological approach will be pursued.

An instability will invoke a trajectory during which po
tential energy is abruptly converted into kinetic energy. T
kinetic energy will then be dissipated into the thermost
i.e., the phonon bath of the confining walls. After some tim
which depends on the coupling strength to the thermos
the Maxwell-Boltzmann PD will be resumed, provided n
new instability has been invoked in the meantime. An ins
bility will thus create a typical velocity PD that will show u
as atail in the Maxwell-Boltzmann PD. Unless the two con

FIG. 1. Trajectory of a lubricant impurity in thexy plane tagged
between two incommensurate surfaces~at large load and small tem
perature!. The relative velocity of the walls isv051023. The posi-
tions are plotted everyDt50.5. The bar denotes 100 times th
average drift distance per time intervalDt. The arrows indicate
dynamical instabilities.
5-3
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fining walls are identical and perfectly aligned~thus com-
mensurate!, there is a class of instabilities in which the e
ergy lost during the pop shows a broad distribution, see a
Ref. @24#. Every pop, characterized, for instance, by the
ergy dissipated, will contribute toP(v) in its own way. We
assume that the net sumPtail of all these individual tails
shows exponential dependence on velocity, thus

Ptail}exp~2Buv2 v̄u!, ~8!

where v̄ is the average velocity of the impurity under co
sideration, typicallyv̄5v0ex/2, andB is a constant. The mo
tivation for this particular choice ofPtail partly stems from
Jaynes’s principle of information theory@25#. From it fol-
lows that the most likely normalized PD on@0,̀ ) with a
given mean value, about which we do not have more kno
edge, is the exponential distribution@26#, thus an exponentia
ansatz forPtail is plausible. Further restraints lead to dev
tions from an exponential form. While these consideratio
are heuristic, our choice ofPtail happens to be a quite accu
rate description for the velocity PDs of impurities betwe
2D, incommensurate surfaces. This will be demonstra
later in the results section.

At small sliding velocityv0, the statistical weight of the
tails must increase linearly with velocity. Hence, the norm
ized PD function for thex component is given by

P~vx!5A m

2pkB8T
S 12

2A8v0

B8
D e2m(vx2 v̄x)2/2kBT

1A8v0e2B8uvx2 v̄xu. ~9!

Here A8 and B8 are phenomenological parameters that c
~and will! depend on the externally applied loadL that an
impurity has to counterbalance, dampingg, and other pa-
rameters. However, they should depend only weakly on t
peratureT and sliding velocityv0 at smallT and small values
of v0. This is becauseA8v0 is a measure for the rate of th
fast processes~which should be proportional tov0 at small
v0), while B8 characterizes the instability related veloci
PD. For 1D systemsB85B, the projection of a 2D exponen
tial PD on one axis, however, leads to differentA8 and B8
@27#. Inserting Eq.~9! into Eqs.~6! and ~7! and integrating
overvx yields the following friction force per impurity atom
Fk /Nfl :

1

Nfl
Fk54gm

A8

B83
22g

A8

B8
kBT, ~10!

from which the friction coefficientmk5Fk /(NwallL) follows.
~Here,L is the average load carried per atom belonging to
outermost wall atom, thusFk and NwallL represent, respec
tively, the net friction force and the net load.! Of course, Eq.
~10! can only be valid as long as Eqs.~8! and ~9! give an
accurate description of the nonequilibrium velocity PD a
provided that the heat flow from the thermostat into the i
purities is close to the thermal equilibrium heat flow. At e
tremely smallv0, two arguments show that the assumpti
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of exponential tails cannot persist. First, the energyDEdiss
that is dissipated during a pop has an upper bound, whic
turn implies an upper bound for the peak velocity. Seco
close to equilibrium, thermal noise is sufficient to invok
~multiple! barrier crossing and recrossing. The ratio of sl
ing and noise-induced instabilities becomes small, which
turn makes the nonequilibrium corrections be less sign
cant.

Equation~10! is based on the one-dimensional distrib
tion functions P(vx). For two-dimensional interfaces an
boundary lubricants, the relevant PD isP(v i) with v i
5Avx

21vy
2. We want to note in passing that accumulati

the histogramP(v i) contains the same required informatio
as P(vx ,vy), however, it requires less data storage. This
why for two-dimensional boundary lubricants, we monit
P(v i) instead ofP(vx ,vy). Assuming rotational symmetry
Eq. ~9! can be replaced with

P~v i!52pv iAv0e2Bv i1S 12
2pAv0

B2 D Peq~v i!, ~11!

whereA andB are phenomenological coefficients with sim
lar meanings as their counterpartsA8 and B8 in the one-
dimensional description.

Inserting Eq.~11! into Eq. ~6! yields

1

Nfl
Fk512pgm

A

B4
24pg

A

B2
kBT. ~12!

ParametersA and B will be obtained by fitting the PDs
accumulated during molecular-dynamics~MD! simulations.
If such fits turn out to be good approximations~and they do
for incommensurate surfaces!, then one has to look into
question descriptions of frictional interfaces that are based
local effective temperature~and local pressure!. Local effec-
tive temperatures would imply Gaussian rather than ex
nential velocity tails. As we will argue later, this differenc
might matter with regard to chemical reactivity in a friction
interface.

Of course, the fits will never be perfect, and one has
address the question whether one can obtain information
perimentally onA andB, i.e., by measuringFk and the av-
erage kinetic energy of the lubricant atoms. We will therefo
compare the values ofFk that are calculated directly~by
averaging the force on the top wall! with those that are ob-
tained indirectly with Eq.~12! after A and B are obtained
through fits.

III. MAIN MODEL AND METHODS

In this paper, we analyze the trajectories of atoms a
molecules embedded between two walls in relative slid
motion by means of molecular dynamics. Different mod
with varying degrees of complexity are investigated rang
from rather simple, one-dimensional impurity models
three-dimensional systems, in which the interaction betw
the lubricant particles is taken into account. In the latter ca
lubricant particles are not only simple atoms but may a
5-4
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KINETIC FRICTION AND ATOMISTIC . . . PHYSICAL REVIEW E 68, 016125 ~2003!
represent short polymers. Here, we will only describe
methods relevant to the full three-dimensional simulatio
as all other cases only require ‘‘dumbed-down’’ versions
that method or small alterations thereof, such as suppres
the interaction between lubricant atoms.

In our model, lubricant atoms interact with each other a
with wall atoms via a truncated Lennard Jones~LJ! potential

VLJ~r !5H 4e@~s/r !122~s/r !6#1C, r ,r c

0, r>r c,
~13!

where r is the distance between two atoms.e defines the
energy scale ands is the length scale of the system. Bo
quantities are set to unity. A constant valueC is added to the
potential for interatomic distances smaller than the cu
radius r c , which assures the continuity of the potential.r c
was chosen as the minimum of the LJ potential,r c5r min
521/6, unless otherwise noted. This choice corresponds
purely repulsive interaction and can be justified by the
servation that at large pressures the essential behavio
caused by the repulsion of the particles. The main effec
including the attractive LJ contribution in the present cont
would be to add an adhesive pressure. Throughout the p
quantities are measured using LJ units, such as time in u
of tLJ5(ms2/e)1/2 and forces in units ofe/s. Atomic
massesm are also set to unity.

Both top and bottom walls lie in thexy plane and consis
of N wall discrete atoms arranged in the hexagonal~1,1,1!
plane geometry of an fcc crystal. The nearest neighbor s
ing dnn in the walls is 1.20914s unless noted otherwise. Thi
choice ofdnn does not match with other length scales in t
system. Moreover, the relatively large value fordnn enhances
the effect of surface corrugation. In most simulations p
sented here, the normal load is kept constant. The loadL will
be stated in terms of normal load per atom in the upper w
hence a unity normal load corresponds to a pressure of a
0.79 in reduced quantities.

Commensurate wall geometries were realized by orien
the two walls in parallel, whereas incommensurability w
achieved by rotating the upper solid surface by 90°. The
of periodic boundary conditions in the wall plane required
slight distortion of the perfect hexagonal geometry in ord
to obtain two quadratic walls. Therefore, walls were not p
fectly incommensurate anymore, but quasi-incommensu
~as every setup realized with finite number precision, stric
speaking!. A wall unit cell consists of two atoms, at position
(0,0) and (dnn/2,A3dnn/2). By choosing the ratio of the wal
unit cells in x̂ and ŷ close to the ideal valueA3 this distor-
tion was minimized. We do not use other relative wall ro
tions in the full three-dimensional~3D! simulations, as it was
found in the study of similar models that the influence of t
rotation angle is weak if it exceeds'5° @28#. We note that
when two solids in an experiment come in contact they w
most likely be incommensurate, as it would take utmost c
to have two identical defect-free crystals and orient th
perfectly. As detailed calculations show, elastic deformati
do not generally alter this argument provided the solids
treated as three-dimensional objects@6,29#.
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While our analysis is focused on simple fluids, we inclu
some work on small chain molecules in order to study
pects of molecular lubricants. To this end, we used a w
established bead-spring model proposed by Kremer
Grest @30#, which models individual monomers as LJ pa
ticles while chain connectivity is ensured by a FENE~finitely
extensible nonlinear elastic! potential given by

VFENE52
1

2
kchRch

2 ln@12~r /Rch!
2#, ~14!

with Rch51.5s and kch530e/s2 @30#. Typical values for
hydrocarbons aree'30 meV, s'0.5 nm, resulting in a
typical time scale oftLJ'3 ps @30#.

Simulations were done using a fifth-order Gear predict
corrector algorithm~see, e.g., Ref.@31#! with an integration
step ofdt50.005. To maintain constant temperature, a s
chastic Langevin thermostat was employed@32#. It consists
of ideal white noise random forces and damping forces a
ing on all thermostatted particles, which obey t
fluctuation-dissipation theorem@32#. A damping constantg
50.5 was used in all simulations. In the presence of ins
bilities, the precise choice ofg is usually quite irrelevant for
friction forces at small velocities@33#, i.e., for the choice
gb50.5 andg t50 we may expect similar friction forces a
for the perhaps more natural choice ofgb5g t50.25, if v0 is
sufficiently small. However, in either case, one must ens
that the random forces satisfy the fluctuation dissipat
theorem.

IV. IMPURITY LIMIT

A. 1D model systems

Here, we want to discuss and extend those results f
Ref. @18# that are relevant to this study. In Ref.@18#, the
following potentialVt for the interaction between the impu
rity and the~one-dimensional! top wall was employed

Vt5Vt,0cos@2p~x2xt!/bt#1Vt,1cos@4p~x2xt!/bt#,
~15!

bt being the lattice constant of the upper wall. A simil
impurity-wall coupling is used to describe the interaction f
the bottom wall, however, the indicest ~for top! have to be
replaced withb ~for bottom!. This is a generalization of the
interactions suggested in Refs.@12,13#, in that a nonzero
first-higher harmonicVt,1 is considered in Ref.@18#. More-
over, the lattice constant of the bottom wallbb is allowed to
differ from that of the top wallbt . We note in passing tha
Refs.@12,13# were concerned with the interplay between e
ternal driving and embedded system, while Ref.@18# focused
on the constant-velocity friction in such systems.

In Ref. @18#, it was found that the behavior of the stead
state, low-velocity kinetic friction is surprisingly rich. Fo
instance, athermal, zero-velocity friction turned out to van
for Vt,15Vb,1<0. In that case, athermal, small-velocity fric
tion can be described as a power lawFk}v0

b with a nonuni-
versal exponent 0,b,1. ForVt,15Vb,1.0, Fk remains fi-
nite as v0 approached zero. The case ofVt,15Vb,150 is
5-5
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particularly intriguing, as the minima move at constant v
locity v0/2, then at some points in time~when there is per-
fect deconstructive interference ofVt and Vb), the location
of the potential energy minima makes a ‘‘phase jump’’ by
distancebt/2. This phase jump, however, does not result
significant energy dissipation, as the location from where
impurity stems and the location where the impurity ends
are symmetrically equivalent.

For incommensurate walls (btÞbb), the behavior is even
richer. If the first-higher harmonic is not included, one w
exerts a maximum force on the impurity and drags the
purity along. As a consequence,Fk is linear inv0, which we
call Stokes friction. For one certain value of the first-high
harmonicVt,1* ~at a fixed ratiobs5bb /bt), Fk can best be
described as a power law in the limit of smallv0. For Vt,1

.Vt,1* , Fk remains finite in the limitv→0, again provided
thermal fluctuations are absent. Figure 2 shows a frict
diagram for the 1D, impurity-lubricant model. In order
yield a more complete picture than that given in Ref.@18#,
additional calculations have been carried out, in order to
termineVt,1* for different values ofbs5bb /bt .

For a more detailed discussion on the effect of therm
fluctuations and the occurrence of a Stokes friction regim
one dimension and its potential applications, we refer
reader to Ref.@18#.

B. 2D model systems

1. Model details

We now allow the lubricant atoms to move within thexy
plane, but motion normal to the interface inz direction is still
neglected. Equation~15! must then be replaced with a ne
model potential. As in other studies, we consider the sym
try of the confining walls to be triangular, i.e.,~111! surfaces
of an fcc crystal, for which the potentialVt between the top
wall and an impurity can be written as

FIG. 2. Kinetic friction diagram for the impurity limit in one
dimension.V1 /V0 is the ratio of first-higher harmonic and funda
mental harmonic in the lubricant-wall interaction.bs5bb /bt is the
ratio of the two lattice constants. On the solid line and the das
line, athermal kinetic friction is described by a power lawFk(v0)
}v0

b with a nonuniversal exponent 0,b,1. In the Stokes regime
below the solid line,Fk}v0. In the Coulomb regime above the sol
line, Fk(v0→0) remains finite. The solid line is an interpolatio
between the circles, which reflect points in the parameter space
have been explicitly investigated.
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Vt~x,z!5(
g

Ṽt~g,z!exp$ ig~x2xt!%. ~16!

In Eq. ~16!, the sum goes over all two-dimensional reciproc
lattice vectors of the trigonal latticeg, x is the position of the
lubricant particle in thexy plane, andxt is the in-plane po-
sition of the ~top! wall. z denotes the~fixed! distance be-
tween the~top! wall and impurity.

The Fourier coefficientsṼt(g,z) between chemically non
bonding species often decay exponentially withugu and in-
creasing distance from the surfacez, thus Ṽt(g,z) can be
written as

Ṽt~g,z!5Ṽt~g,0!exp$2auguz%, ~17!

where parametersVt(g,0) anda both depend on the chem
cal nature of the impurity atom and confining wall. Potentia
of this form are known as Steele potentials@34#. They have
proven to describe the potential energy landscape of at
on crystalline surfaces reasonably well@35#. The fundamen-
tal harmonic in this potential is related to the smallest no
zero lattice vectorg5(2p/A3,0) and its five symmetrically
equivalent counterparts, which are obtained by rotatingg
successively by 60°.~Note that the distance between ‘‘a
oms’’ in the walls is set to unity, which differs from th
choice for the full 3D simulation model, see Sec. III.! First-
higher harmonics are related to reciprocal lattice vectors
are the sum of a suitable pair of two different fundamen
g’s and so on. The fundamental harmonic will be dominan
small loads, however, as the external pressure incre
~which makesz decrease!, the relative importance of higher
harmonics will increase due to Eq.~17!. The coupling be-
tween the impurities and bottom wall is similar to that b
tween the impurities and top wall, however, the recipro
vectorsg are rotated an angleu with respect to the top wall’s
g’s. Two walls are called commensurate ifu is an integer
multiple of 60°. An equivalent 2D model without highe
harmonics was used recently by Dalyet al. @24# for a study
similar to that presented here.

In the following, we will be concerned with an analysis
mechanically stable position for the impurity atoms and th
motion as the walls slide against each other. The goal i
identify situations, where the trajectory of a mechanica
stable position suddenly disappears, which would lead t
dynamical instability. Such an analysis was given for 1
lubricants in Ref.@18#, see Fig. 1 in that paper, and also
Ref. @24# for 2D systems. For our analysis, the bottom wal
lateral positionxb is kept fixed, whilext is moved in small
constant incrementsdx with udxu[dx51025–1022. After
identifying an initial relative minimum in the impurity wal
potential Vi ,w5Vb1Vt , a steepest descent algorithm~we
used the MATHEMATICA function FINDMINIMUM @36#!
searches for the closest minimum inVi ,w in the vicinity of
the previous one. If the distanceDd between the location o
the new and the old minimum is greater thanDd50.1, we
say that we identify apop. While this choice ofDd is some-
what arbitrary, we ensured that our conclusions remai
unaltered whenDd was varied in reasonable bounds anddx

d

at
5-6



th
-
ee

e
n

all
si-
i-
v
e,

ct
ll
a
ld

th
te

ta

ie
ot
g
n
di
em
c
D

ha
t
n

l
t

of

im-
e

one

di-

ow
re
one
n a
ove
us

an
n-
his
nd
nd
a-
-
ral
lso
ate

la-
d-
h

ili-

d

be
the

the
-
vior
7.
and
no

e
also
e

7,
we
ich

er
e

o
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was further decreased. Since both methods employed in
study ~simulations and steepest descent! are exact and iden
tical within controllable errors, their results mutually agr
within these margins.

2. Commensurate walls

Impurity atoms between commensurate walls only hav
finite number of nonequivalent minima in their potential e
ergy landscape. Once a minimum is identified, symmetric
equivalent minima will exist at periodically repeated po
tions that follow from the lattice of the confining walls. Var
ous mechanically stable ‘‘stacking’’ geometries can be en
sioned for our walls of trigonal symmetry, for instanc
hexagonal close packed~hcp! and face centered cubic~fcc!-
type configurations best characterized as, respectively,ABA
andABC layering structures. The boundary lubricant refle
the middle layer. While it does not correspond to an idea
crystalline layer, the probability for a lubricant atom to sit
a certain position would be indeed periodic, i.e., it wou
have a maximum in every singleB position.

As the two walls are slid with respect to each other,
situation is akin to the relative sliding of two commensura
one-dimensionalsurfaces@18#. The ‘‘trajectories’’ of me-
chanically stable positions bifurcate and recombine at cer
relative, lateral displacements of the two solids, see Fig. 1~a!
in Ref. @18#. This scenario invokes so-calledcontinuousin-
stabilities. The peak velocities during continuous instabilit
tend to zero asv0 tends to zero, however, this does n
happen linearly. This will ultimately lead to the followin
behavior if the walls are slid parallel to a symmetry axis a
the top wall is allowed to move freely in the transverse
rection: After every half lattice constant moved, the syst
will convert from an fcc-type structure to an hcp type stru
ture or vice versa. This behavior is also found in our 3
default system~see Fig. 3!, in which impurities interact with
wall atoms through Lennard Jones potentials rather t
through Steele potentials. The situation changes, when
top wall is not allowed to move in the transverse directio
which was the choice in Ref.@24#. In that case, particles wil
occupy positions with high potential energy, which leads

FIG. 3. Trajectory of a tagged particle~solid line! and of the
upper wall ~dashed line! for a commensurate system. The upp
wall is moved parallel tox at constant velocity. Horizontal lines ar
drawn at intervals 1/(4A3). For integer values ofx/dnn the configu-
rations can be identified as hcp, for half-integer values as fcc c
figurations.
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instabilities. In this study, however, we focus on the case
zero transverse force.

As the mechanically stable positions of the embedded
purities show no discontinuities, the kinetic friction forc
will tend to zero at smallv0 even if thermal fluctuations are
absent. From the comparison to the 1D model systems,
would expect a power-law behavior as in Eq.~1! with
Fk(0)50. This behavior does not depend on the sliding
rection. It is also observed for ratios ofVt(g,z)/Vb(g,z) dif-
ferent from unity.

A central issue in the present paper is the question h
robust the property of the simple impurity model is as mo
complexity is added to the model. In the present case,
may argue that lubricant atoms would be able to move i
correlated manner up to a coverage of one monolayer. Ab
this coverage, the impurity model breaks down for obvio
reasons.

3. Incommensurate walls

Impurity atoms between incommensurate walls have
infinite number of inequivalent minima in their potential e
ergy landscape for a given relative wall displacement. T
means that at a given moment in time, it is impossible to fi
two different positions where the value of the potential a
all its derivatives are identical. Yet, the number of inequiv
lent trajectories of~meta!stable positions can be small, be
cause in most cases they will all be identical up to tempo
shifts when the walls are in relative sliding motion. See a
the discussion of the dynamics of the incommensur
Prandtl-Tomlinson model by Fisher@33#.

We analyze the instabilities by varying randomly the re
tive orientationu between the two walls as well as the sli
ing directionf. At this point, we are only concerned wit
the occurrence of instabilities, rather than with the~average!
amount of energy dissipated during an instability. Instab
ties between incommensurate walls are shown in Fig. 1.

Unlessu is close to an integer multiple of 60°, we fin
that the number of instabilities depends only weakly onu

and f. If we choose the fundamental harmonicsṼ(g) of
both walls to be identical and the higher harmonics to
absent, then we find on average one instability each time
upper wall has been moved laterally with respect to
lower wall by a distance of 200dnn. Increasing the interac
tion strength for just one wall does not change the beha
until the ratioṼt(g)/Ṽb(g) or its inverse exceeds about 4.
Above this threshold value, the metastable positions
hence the particles follow the motion of just one wall and
instability occurs.

Like Daly et al. @24#, we note that the instabilities ar
possible due to transverse motion of the impurities, see
Fig. 1. One of the issues Dalyet al. also discussed was th
question above which value ofṼt(g)/Ṽb(g) the lubricant
particle remains pinned to the~top! wall. They reported a
value of 4.5, while we find a slightly higher value of 4.
which essentially confirms the prediction. Furthermore,
also analyzed the effects of first-higher harmonics, wh
were neglected in Ref.@24#. Including the first-higher har-
monic g1 in addition to the fundamental harmonicsg0 in-

n-
5-7
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creases the number of instabilities, in particular, for hig
harmonics with a positive sign. Thus, the occurrence of
stability remains a robust feature of incommensurate wa
For a ratioV(g1)/V(g0)50.1, the number of instabilities i
increased by a factor of 6.@At this ratio the absolute value o
the second harmonic would be in the order of 0.01V(g0),
see Eq.~17!, and will thus be neglected.# One may argue tha
the observed increase in pops is related to an increas
incommensurability due to an additional~small! length scale.

C. 3D Model

1. Effect of commensurability on PDs

We now turn to the analysis of the full three-dimension
model, described in detail in Sec. III. Here, we also inclu
the interaction between the lubricant atoms. However, as
coverage is only a quarter layer, the results remain alm
identical to the ideal impurity limit. Despite these chang
with respect to Sec. IV B, all arguments discussed there
main valid under the new conditions. For instance, Fig
shows the expected dynamical behavior of twocommensu-
rate walls separated by lubricant impurities in sliding m
tion, i.e., an alteration of the hcp and fcc-type configuratio
Most importantly, the trajectories of lubricant atoms beco
continuous for commensurate walls. It is instructive to co
pare Figs. 1 and 3. For completeness, we mention that
simulations in Figs. 1 and 3 were both done at an exte
load of L530 per top wall atom, a thermal energy ofT
50.01, and relative sliding velocity ofv051023.

The different trajectories of the mechanically stable sta
result in qualitatively different velocity distributions, even
the presence of thermal fluctuations, which is shown in F
4. It can be seen that the velocity PDs of impurities betwe
incommensurate walls can indeed be described with the n
equilibrium PD suggested in Eq.~9!. It turns out that the PDs
longitudinal~x! and transverse~y! to the sliding direction~x!
are almost identical. We note in passing that the velocity

FIG. 4. Probability distribution~PD! of the fluid particles’x- and
y-velocity components for shearing velocitiesv051024 and 1022

for incommensurate and commensurate wall orientations aT
51022 and L530 for our standard system. Around the cent
Maxwell-Boltzmann PD wide tails develop upon shearing. The ta
follow an exponential PD, see Eq.~9!, which have similar magni-
tude parallel and transversel to the sliding direction. For comm
surate walls, the tails are suppressed by two orders of magnitu
v051022 and disappear completely for the lower shear veloc
v051024, when the PDs becomes almost indistinguishable fr
the Maxwell PD~not included!.
01612
r
-
s.

of

l
e
e

st
s
e-
3

.
e
-
he
al

s

.
n
n-

D

normal to the interface (z direction! is affected much less
than the in-plane PDs.

2. Effect of sliding velocity and temperature on PDs

As the relative sliding velocity between the walls
changed by a factor of 100, the prefactor of the exponen
tail scales with the same factor, as suggested in Eq.~9!. The
commensurate walls behave differently. First, the nonequi
rium velocity distributionP(v) deviates from equilibrium
much less than for incommensurate walls and it does
obey Eq.~9! as well. More importantly, the tails ofP(v)
behave differently from those of incommensurate surfa
under a change of sliding velocity. This difference is due
the absence of instabilities for the commensurate system
v051024, the velocity PD for commensurate walls is almo
identical to the equilibrium Maxwell-Boltzmann PD, whil
at the samev0, the PDs for incommensurate walls sho
distinct nonequilibrium tails. We employ a logarithmic sca
for the PDs, because the tails can hardly be discerned
linear scale.

Further examination of the distribution functions for in
commensurate surfaces as shown in Fig. 5 reveals tha
coefficientsA andB in Eq. ~11! are approximately constan
for a wide range of velocities and temperatures. The par
eters can be easily read off the graphs: The slope of the
equalsB and the exponential of they-axis intercept of a fitted
line through the tails equalsAv0. The data for Fig. 5 were
produced with load L510.0 for temperatures T
51023–1021 and sliding speedsv051023–1021.

The present discussion is valid when the nonequilibri
tails are clearly visible such as in Fig. 5. It becomes inva
whenv0 reaches extremely small values, i.e., when the t
are starting to disappear under the central Maxw
Boltzmann peak. Equation~9! then ceases to be a good d
scription of the PDs in that limit and Eqs.~9!–~12! are no
longer applicable. However, the equation describing the h
flow balance between the thermostat and confined sys
Eq. ~6!, is unaffected by this argument and remains va
even in the limitv0→0.

l
s

-
at

FIG. 5. Probability distribution ln@P(vi)/2pv i# at loadL510.0
for temperaturesT51023, T51022, T51021 and sliding speeds
v051023, v051022, andv051021. At low in-plane velocitiesv i
a thermal peak described by the Maxwell-Boltzmann PD~at T
50.1 exemplified by a thick dotted line! dominates, before the PD
crosses over to exponentially distributed tails described in Eq.~11!.
The slope of the tails,B, is independent of bothT and v0. The
prefactor of the tail distribution is proportional tov0 and changes a
large temperatures.
5-8
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3. Effect of load on PDs

The load dependence of the coefficientsA andB was in-
vestigated as well. We show the effect of load on the PDs
one of our model systems exemplarily in Fig. 6. Many sim
lar calculations were done for other loads, coverages,
sliding velocities with similar results for incommensura
surfaces. In all cases, we found thatA is roughly proportional
to L20.8, while B is approximately proportional toL20.4.

From the normalization factor of the central equilibriu
peak in Eq.~12!, one may infer that the ratioA/B2 is a
measure for the number of atoms far out of equilibrium a
hence for the number of invoked instabilities. Given the p
portionalitiesA}L20.8 and B}L20.4, this number remains
constant whenL is increased. Inserting the proportionalitie
A}L20.8 andB}L20.4 into Eq.~12! results in a small devia
tion from Amontons’s lawFk}L at the microscopic level.

Potential differences scale withL in lowest order, thus we
obtain for the energy dissipated in a popDEdiss}L}v2.
Hence, for exact proportionality, the width of the nonequil
rium tails was}L0.5, respectivelyB}L20.5, yielding Amon-
ton’s law. This shows thatB}L2l,l'0.5 is to be expected
while the precise value of the exponentl will depend on the
specific system potentials.

The deviation in our system is due to a shift of the relat
significance of lower- and higher-order harmonics. This s
would presumably be smaller if the repulsive forces w
modeled with~slightly more realistic! exponentially repul-
sive forces@37#.

Figure 6 reveals that the exponential tails fall off le
slowly when the pressure is increased. Thus, large press
in sliding contacts can dramatically increase the probab
of large velocities, even though the lubricant’s average
netic energŷ Tkin& ~or effective thermal energy! may barely
change. This favors the occurrence of rare events suc
chemical bond breaking, as it becomes much more lik
than a bond is hit quasisimultaneously by two high-veloc
atoms. As the nonequilibrium PDs fall off less slowly tha
the equilibrium PDs, bond breaking will occur more fr
quently in nonequilibrium than in equilibrium at a give
thermal energŷ Tkin&. It will thus be difficult to assign a
unique effective temperature that reflects at the same
the reactivity of the molecules in the junction and the ene
contained in the vibrations.

FIG. 6. Probability distributionP(vy) at T50.01, v051023

and two different loadsL51.0 andL510. The thermal equilibrium
distributionPeq is inserted for comparison.
01612
r
-
d

d
-

ft
e

res
y
i-

as
ly

e
y

4. Comparison between calculated and measured
friction coefficients

The fit of curves equivalent to those shown in Figs. 4 a
5 allows one to estimate the kinetic friction forceFk with the
help of Eq. ~12!. This result can then be compared to t
friction force that is measured directly in the simulation.
turns out that such a comparison typically leads to an ag
ment within approximately 25% accuracy, which can be i
proved by also taking into account the effects of instabilit
on the motion normal to the surfaces. The deviation betw
the ‘‘predicted’’Fk’s and the directly measuredFk’s is due to
the fact that the tails are not exactly exponential. This
particularly important when the temperature is large, orv0 is
extremely small. If we accumulate the correctP(v)’s in the
simulation and use Eq.~6! to predictFk , the agreement be
tween predicted and observed kinetic friction is almost p
fect, also whenv0 tends to 0.

Figure 7 shows the degree of agreement for one partic
model system. One can see that the kinetic friction coe
cientsmk as obtained from the full velocity PD, see Eqs.~6!
and~7!, agree perfectly quite well with the directly measur
mk . Neglecting the contribution of the motion normal to th
surface results in anO (20%) underestimation of the friction
force. Estimatingmk indirectly with the help of Eqs.~11! and
~12! leads to an underestimation of about 25%.

5. Effect of temperature

It was shown by He and Robbins@28# that the model
system on which this study is based yields logarithmic
locity corrections to the friction forceFk for incommensurate
surfaces, provided the temperature is positive and the slid
velocity is not too small, see also the discussion in Ref.@18#.
Our simulation results of thev0 corrections toFk for incom-
mensurate surfaces are not shown explicitly, however, t
confirm the results by He and Robbins, The basic reason
a logarithmic-type correction had already been recognized
Prandtl@8#. Due to thermal fluctuations, the embedded ato
can jump over local energy barriers and the instabilities w

FIG. 7. Comparison between the friction coefficientmk as mea-
sured directly at the wall and calculated indirectly through the n
equilibrium velocity distributionsP(v). In two cases, the true dis
tributions P(v) were used. Taking into account both in-plan
velocities v i and velocitiesv' normal to the interface results in
perfect agreement. We also first fitted the PDs to Eq.~11!, deter-
mined the coefficientsA andB from the simulations, and then ca
culated the kinetic friction force with Eq.~12!. Quarter layer of
lubricant,T50.001 andL530.
5-9
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be ignited prematurely. This reduces the necessary exte
force to maintain sliding, because it does not need to m
the embedded atom all the way to the top of the ene
barrier.

For commensuratesurfaces, discontinuous instabilities a
absent and therefore the effect of thermal fluctuations m
be different. This issue is investigated in Fig. 8. Due to
large loads and the small temperatures employed, the lin
response regime is not necessarily reached at the sliding
locities v0 accessible to the simulations, i.e.,v051025.
Therefore, we obtain kinetic friction coefficientsmk that ap-
parently vanish according to

mk }

v0→0

v0
b , ~18!

with exponents 0.25&b&1.
It is remarkable that a small change in temperature ha

rather strong effect onFk . For the small loadL51, the
exponentb is approximately unity at temperatureT51022

and one may argue that the correspondingFk(v0) reflects a
linear response curve. AsT is lowered toT51023, a differ-
ent exponentb is obtained, reflecting nonequilibrium beha
ior. When the load is increased by a factor of 10, the ene
barriers also increase approximately by a factor of 10. The
fore, theFk(v0) curves belonging to massesL*10 should be
considered far from equilibrium, i.e, athermal. This wou
favor exponentsb less than unity. However, this expectatio
is not true. Instead, a Stokes-type friction is observed. T
almost linear relation ofFk and v0 for these largest load
(L5100) may thus be an effect due to higher harmonics
the lubricant-wall potential. As one can see in the 1D, inco
mensurate systems, i.e., Fig. 2, the friction-velocity relati
ship can change qualitatively at certain critical values of
higher-order harmonics.

V. BEYOND THE IMPURITY LIMIT

So far, we have neglected thedirect interactions between
the impurities, or the coverages were small enough in or
to render the direct interactions negligible. This approxim
tion is reasonable when the coverage is small and when
lubricant particles are simple spherical units without inn

FIG. 8. mk of the commensurate standard system vs pull
velocity v0 at different normal loadsL and temperaturesT. Note the
logarithmic scale for they axis. In all casesm k vanishes with a
power lawvb asv→0, except forT51023, L530, where a con-
stant, small value seems to be reached.
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degrees of freedom. When either condition is violated,
energy landscape and hence the detailed characteristics o
instabilities will change. This, in turn, might lead to a qua
tative change in the tribological behavior of the junction.
this section, we will study the applicability, the limitation
and the corrections of the impurity limit model that are d
to the interactions between lubricant atoms.

A. Coverage effects

When the lubricant coverage is close to or greater th
one monolayer and the junction is sheared, particles
have to move in a correlated fashion. In order for one at
to jump to another mechanically stable site, its neighbor
to jump as well, etc. A detailed description of the dynam
will be very complicated, i.e., it may involve sliding of cor
related blocks along grain boundaries and the formation
dislocation-type structures@38#. Yet, the argument persist
that instabilities and sliding-induced deviations from t
equilibrium velocity distribution function lead to friction.

Besides the correlated motion, some more details cha
when the coverage is increased. For example, pops also
cur in the direction normal to the interface with a simil
magnitude as parallel to the interface. This is reflected in
probability distributionsP(v) for the in-plane velocityv i
5Avx

21vy
2 and the normal componentv'5vz of the fluid

particles, see Fig. 9. The system under consideration is
commensurate, the walls are separated by a double layer
the externally imposed load per wall atom isL530. Al-
though the detailed dynamics of the lubricant atoms mus
very different from those in the impurity limit, Eqs.~9! and
~11! provide again a reasonable description forP(v') and
P(v i), respectively, i.e., a central Maxwell-Boltzmann pe
and a nonequilibrium exponential tail. Similar curves, whi
are not shown explicitly, were obtained for a coverage up
five monolayers.

As before, the kinetic friction forceFk is the integral over
the deviation of theP(v)’s from the Maxwell-Boltzmann
distribution, as stated in Eq.~6!. Fk is shown for various
coverages and sliding velocities in Fig. 10. Both commen
rate and incommensurate systems are investigated and a
their behavior is strikingly different.

g FIG. 9. Distribution of the fluid particles velocity in plane
P(v i), and perpendicular to it,P(v'), for an incommensurate sys
tem with two monolayers coverage at sliding velocitiesv051024,
1023, and 1022. The central Maxwell-Boltzmann parts are shifte
because of the normalization 1/2pv i of P(v i).
5-10
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We start our discussion with the commensurate system
a coverage ofC50.25, results are very close to the impuri
limit. Fk decays to 0 with a power lawvb where the expo-
nent b is less than 1. As the coverage is increased toC
50.5 or even C50.75, Fk decreases considerably le
quickly with decreasingv0 than in the impurity limit. The
behavior remains strikingly different from Coulomb friction
This changes when the coverage reaches and exceed
full monolayer. For coverages beyond double layers, the
netic friction force even exceeds that of incommensurate
tems. The prediction in Ref.@18# that commensurate system
should show smaller kinetic friction than incommensur
system must thus be limited to extreme boundary lubricat
Above one monolayer lubrication, this trends seemin
turns around. Experiments suggest that commensurab
leads to enhanced friction between mica surfaces lubric
by a double layer or more@39#. Unfortunately, no study is
known to the authors in which a monolayer of lubrication
less was used between two~smoothly! sliding commensurate
walls.

At the smallest velocity investigated,mk increases by a
factor greater than 200 for thecommensuratecase, when we
increase the coverage fromC50.5 to C52. The same
change in coverage for incommensurate surfaces only yi
a factor of 2. Hence, incommensurate surfaces show m
weaker coverage dependence than commensurate interf
Overall, there is relatively little change ofFk with coverage
for incommensurate walls with the exception ofC51.5. Due
to the large load employed, the 1.5 monolayers are sque
into a single layer, which then essentially acts like a so
This situation would not occur, or at least occur only for
short period of time, if the lubricant could flow out of th
junction. We conclude that the coverage dependence is w
for incommensurate walls.

B. Effects due to molecular bonds

Most lubricant particles possess an inner structure. H
we will focus on the most simple generalization of t
spherical molecules considered so far, namely, dimers
hexamers~6-mers!. Dimers would represent small linea

FIG. 10. Coverage dependence of the dynamic friction coe
cient m k of a system containing 0.25–2.5 monolayers of sim
liquid at T51022 and L530. Commensurate systems~c! are de-
noted with open symbols and incommensurate walls~ic! are de-
noted with full symbols.
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molecules such as C2H6, while hexamers are representativ
of short, linear alkane chains. The dynamics of the lubric
particles will change due to the additional internal degrees
freedom. Alternatively, one may argue that the dynamics
monomers is restricted because every monomer is const
by at least one chemically bonded neighbor.

While monomers only have translational degrees of fr
dom, dimers also haverotational degrees of freedom. It is
tempting to speculate that ‘‘rotational’’ instabilities can occ
in addition to the ‘‘translational’’ instabilities. Therefore, on
might expectFk to be larger for dimers than for monomer
However, the rotational and translation motion will not b
independent of each other and the coupling between th
might reduce the effect of a ‘‘translational’’ instability. Th
question which effect dominates can only be answered
analytical calculations or by molecular dynamics simu
tions. Simulation results for the kinetic friction force in
boundary-lubricated interface are shown in Fig. 11.

In Fig. 11, one can learn that the ratior5dnn/dmol of the
next-neighbor spacingdnn in the walls and the intramolecula
bond lengthdmol plays an important role, particularly fo
commensurate surfaces. When the intramolecular b
length is close to the next-neighbor distance of wall ato
d nn, Fk disappears as a power law with sliding velocityv0.
This means that the ‘‘interference’’ effects between comm
surate walls persist and that no instabilities occur. Surp
ingly, this is even observed for hexamers. However, ifdmol
differs from dnn, instabilities also occur in boundary
lubricated systems, even for commensurate walls. These
stabilities are invoked through the rotational degrees of fr
dom. While the misfit betweend mol and dnn leads to
Coulomb friction between commensurate walls, its value
Fk remains small as compared to the incommensurate c

We now turn to the incommensurate walls. Interesting
the smoother walls withdnn51.0 produce higher kinetic fric-
tion than the walls withdnn51.2, while the opposite is true
for obvious reasons in the case of static frictionFs . The
reason for the effect inFk is that the reduced neares
neighbor spacing leads to a higher rate of popping proces

-

FIG. 11. Dependence of the friction coefficientmk on the wall
lattice constantdnn for a quarter monolayer of a dimer and a 6-m
with bond-lengthdmol50.967 for commensurate~c, open symbols!
and incommensurate~ic, full symbols! orientation at small tempera
tures T51022 and large loadsL'30 ~adjusted to yield identical
pressures!.
5-11
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as more atoms sliding past each other at a givenv0, while
the energy gain in the pops is only slightly decreasing. T
effect can be verified by comparing the distributions of t
particle velocities. The effect remains stable for all degr
of polymerization. The high friction of a dimer is caused
the contribution of their fast rotations. This is revealed by
distribution of the bonds’ angular velocities. Despite the
trends, incommensurate systems prove again to be less
ceptible to quantitative changes in the parameters that d
mine the details of the model than commensurate system

VI. CONCLUSIONS

Kinetic friction requires the prevalence of instabilitie
~mechanical hysteresis! in a system. In the present paper, w
have focused on instabilities in the trajectories of partic
confined between two walls, which are sheared against e
other. When an instability is reached, the particle does
find a local potential energy minimum in its vicinity anymo
and is thus forced to ‘‘pop’’ into the next local minimum
sees. At small sliding velocityv0, this will lead to a high
velocity, which depends solely on the energy landscape.
kinetic energy is gradually dissipated, resulting in a friction
force. We derived a relationship between the~nonequilibri-
um! velocity distribution functionP(v) and the friction force
Fk . The characteristics ofP(v) and thusFk depend only
weakly on coverage, sliding velocity, load, and other para
eters for incommensurate surfaces.

In a generic setup, we first used two Steele potent
reflecting two two-dimensional, triangular walls, whic
could be rotated with respect to each other to achieve
incommensurate system. We then computed numerically
adiabatic trajectory of a test particle. It was found that ins
bilities were a robust feature of the incommensurate syst
Different off-symmetry wall rotations and inclusion o
higher-order contributions to the Steele potential as wel
asymmetric interaction strengths of the walls did not alter
occurrence of the instabilities, but only affected their fr
quency.

Including interactions between lubricant atoms does
change the existence of instabilities and hence the pres
of the Coulomb friction either. In contrast, the commensu
bility of the walls allowed for especially smooth trajectori
of impurity atoms. The trajectories remain smooth when
teractions between lubricant atoms are included up to a c
erage of one monolayer. Above one monolayer, the lubric
atoms do not move coherently any longer and instabili
are starting to occur within the film. Kinetic friction rise
dramatically as a consequence.

We speculate that coherent motion similar to that just
scribed may also be responsible for the behavior observe
a pioneering quartz crystal oscillator study by Krim a
Chiarello @40#. They found that the friction between asolid
monolayer and a smooth surface was much smaller than
friction between a fluid monolayer and the same surface.
reverse was reported for a rough surface. Of course, the
tion of a layer adsorbed on a microbalance is different fr
that of a ‘‘between’’-sorbed layer, because in the first ca
there is no confining top wall, and sliding-induced wall i
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terference effects cannot occur. This is an important qua
tive difference, which prevents us from making a direct co
parison of our simulations with the above-mention
experiments. One may yet argue that commensurability
induce coherent motion of the film, be it adsorbed
‘‘between’’-sorbed. This suppresses erratic pops, which u
mately lead to energy dissipation. Thus, if one assumes
film and smooth substrate were commensurate, the small
ues for the kinetic friction force would not necessarily be
contradiction to the supposedly large static friction force.
the other hand, for rough, disordered surfaces, a solid mo
layer would not be able to move coherently, which would
consistent with its large friction as compared to a fluid lay

We turn back to the discussion of the nonequilibrium v
locity distributions. For incommensurate walls, the distrib
tion consists of a central peak, which is essentially identi
to the equilibrium velocity distribution, and of additiona
nonequilibrium tails. These tails fall off only exponential
with v, which is slower than the exponential decay withv2

in equilibrium systems. This observation is rather generic
incommensurate systems and independent of the lubri
coverage. As the real velocity distribution function is qua
tatively different from Gaussians, it seems futile to descr
the interface in terms of an effective temperature. We arg
that given a specific kinetic energy associated with a lub
cant ~which could be used to define an effective tempe
ture!, the nonequilibrium system would be more likely
invoke chemical bond breaking or other chemical reactio

Overall, the impurity model provides a good descripti
of the typical characteristics of a boundary-lubricated s
tem. However, it is essential to study two-dimensional int
faces and incommensurate surfaces. One-dimensional an
commensurate surfaces lead to untypical behavior, i.e., ra
large sensitivity of the friction force with respect to sma
changes in the model~details of interaction potential! or in
the external parameters~sliding velocity, load, temperature
etc.!. This is unfortunate, because incommensurate walls
much more common than commensurate walls, which lea
us with fewer possibilities to control friction.

A surprising result of our study for incommensurate wa
is that increasing the atomic scale roughness of the w
may actually sometimes reduce the kinetic friction force.

It would be interesting to compare our predictions co
cerning the velocity distributions to the experimental da
While scattering data from small, confined volumes is c
tainly notoriously difficult to obtain, recent advances ha
been made. Using fluorescence correlation spectrosc
Mukhopadhyayet al. @41# measured translational diffusio
in molecularly thin liquids confined within a surface forc
apparatus. In the future, it might be possible to extend th
studies to sliding situations so that velocity distributions c
be measured.
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APPENDIX: RELATION BETWEEN VELOCITY
DISTRIBUTION AND FRICTION

Consider a system in steady-state equilibrium with
following underlying equation of motion

mẍ1mg ẋ5Fb~x!1Ft~x2v0t !1G~ t !. ~A1!

Here, we chose the same terminology as in Sec. II, i.e.,Fb(x)
denotes the force of the bottom wall on an impurity ato
located at positionx andv0 is the velocity of the upper wal
with respect to the substrate. We multiply Eq.~A1! with ẋ
and average over a long time intervalt. We then interpret
the resulting individual terms. They can be associated w
the ~average! power dissipated within the system or the~av-
erage! power put into the system. First, the average cha
of kinetic energy with time equals zero, namely,

1

tE0

t

dtmẍẋ5
1

tE0

t

dt
d

dt
Tkin

5
1

t
@Tkin~ t5t!2Tkin~ t50!#→0 for t→`.

~A2!

The second term is proportional to the time-averaged kin
energy of the system with respect to the lower wall:

1

tE0

t

dtmg ẋẋ5gm^ẋ2&52g^Tkin&, ~A3!

^Tkin& being the time-averaged or ensemble-avera
~steady-state! kinetic energy of an impurity. Thermostatin
also parallel to the top wall, e.g., by choosingg5g t5gb ,
requires a trivial modification of the reference system. T
next term is the average work of the bottom wall on t
impurity
-

s

01612
e

h

e
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d

e

1

tE0

t

dtẋFb~x!5
1

tE0

t

dtS 2
d

dt
Vb~x! D

5
1

t
$Vb@x~t!#2Vb@x~0!#%→0, ~A4!

which must vanish in any steady-state system. Of cours
the model was generalized such that~steady state! wear
would occur, then the contribution discussed in Eq.~A4!
would indeed remain finite.

For the discussion of the next term in Eq.~A1!, it is nec-
essary to keep in mind that

d

dt
Vt~x2v0t !52Ft~x2v0t !@ ẋ2v0#. ~A5!

This and the same considerations invoked for Eq.~A4! yield

1

tE0

t

dtẋFt~x2v0t !5^Ft&v0 , ~A6!

where^Ft& is the time- or ensemble-averaged force that
top wall exerts on an impurity. This force or depending
the definition its projection onto the sliding direction can
associated with the kinetic friction forceFk .

The contribution due to the random forceG(t) is the most
difficult contribution to calculate. However, if the system
close to local equilibrium for most of the time, then the e
pectation value ofG(t) ẋ can be expected to be close to th
value of this expression in thermal equilibrium. In equili
rium, it must compensate the expression discussed in
~A3!, hence

1

tE0

t

dtẋG~ t !'2g^Tkin&eq, ~A7!

where^Tkin&eq denotes the average kinetic energy in therm
equilibrium.

Assembling all necessary terms yields

2g~^Tkin&2^Tkin&eq!5Fkv0 . ~A8!

Note that Eq.~A8! is equivalent to Eqs.~6! and ~7!.
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